What's Gone Wrong

A brief overview of coating issues encountered in the emerging site-applied UV market

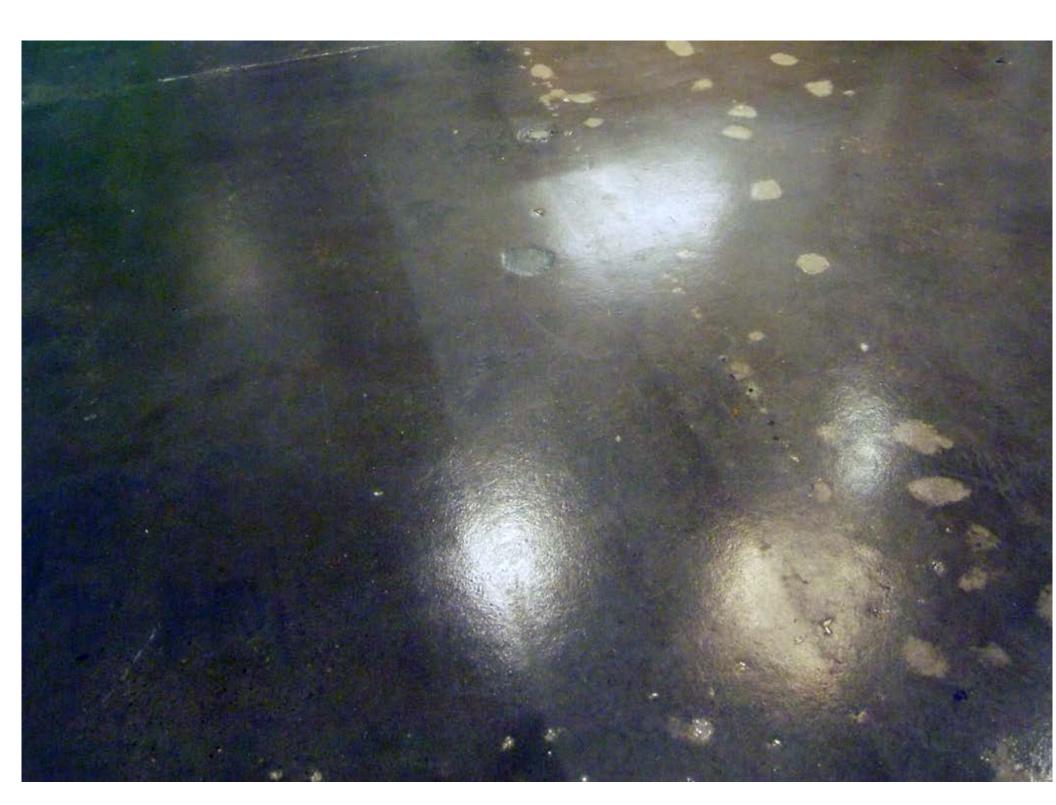
Daniel Dayon HID Ultraviolet RadTech 2012

What are we doing here?

- This presentation is intended to provide an overview of coating problems that have been experienced in this industry.
- Most of these issues aren't encountered or even considered until months into the development process.
- Having a list of these problems will, hopefully, prepare formulators interested in site-applied for the difficult road ahead of them.

Zipper Lines.....

- In the factory, cure widths are bigger than your substrate.
- 10 foot lamp? No problem!
- On the job site? Problem....
- Curing wider than about 2.5' is unfeasible due to doors, maneuvering, uneven floors, etc.
- This leads to the much maligned zipper line.



Can we fix it with optics?

 Feathering light out can sometimes reduce or eliminate zippers by giving a cure gradient away from the machine, softening the shrinkage differential.

However....

- Partial curing tends to introduce differences in finish appearance: gloss lines/haziness/etc. This is far more pronounced when the coating contains matting agents.
- A potentially unsafe piece of equipment in untrained hands is now a very dangerous piece of equipment in all hands.

Temperature problems

- Zipper lines appear to be more prevalent at lower temperatures.
- Flow is important. If the coating turns to putty at low temperatures, your applicators aren't going to be putting it down at recommended thickness, and the finish appearance will change.
- Remember, you're not in a factory! These environmental variables vary wildly.

Wait – Did I cure there?

- Dyes exist which bleach out when exposed to UV light. Use them!
- They make the curing process much easier: It's
 extremely easy to lose track of where you've cured,
 as there is often no visible difference between a
 cured and uncured surface.
- Very easy to step on uncured coating, very difficult to repair it seamlessly.
- Helps you cure in a straight path.

How thick?

- Make sure applicators are trained with wet film thickness gauges. Many don't know how to use them! (And many have an epoxy-based mindset of 'more is better')
- Bleaching dyes allow for applicators to spot at a glance an area that is too thin or too thick.
- The usefulness of such dyes in this regard cannot be overstated.
- One puddle = blister/crack/spiderweb = costly repair

No applicator will ever own a radiometer

- Ever.
- Some won't even pick up a \$5 voltmeter.
- Do not design a coating that works only with a brand new, perfect lamp.
- Discharge lamps steadily lose intensity over their life, and it's unreasonable to expect a applicator to replace it when it gets to 90% output.
- Magnetic ballasts will vary lamp intensity with line voltage. (We've seen <100V at the machine!)

What am I putting this on?

- Are you sure this substrate is what you think it is?
- Self-leveling patch materials can have highly porous structures. This is bad for a material that will not cure once soaked in.
- Terrazzo may be cementitious or resinous, but people want to coat it either way, and don't know or care what it is, often enough.

Concrete Specific problems

- Cracks & Joints. Do they need to be filled? Can the coating handle an expansion joint, or will that cause it to fail if it cracks/delaminates?
- Substrate Preparation
 - Some formulators have been very lax with specifying surface prep. This has led to many job failures.
 - Recommend CSP2 or better, just to be safe.
- Coating soaking into the substrate
- People don't like coating whole floors with multiple UV layers. It's time consuming.

VCT-specific problems

- VCT breakdown.
- THIN. Scratches visually pop out when they fill with dirt, thicker coating = deeper scratch. Don't try to put down more than a couple mils on VCT.
- Shrinkage: Poorly glued tiles can just pop right off.
- Cracks: Coating can get in, never cure, attack adhesive, cause the floor to fail. Rollers can minimize this over squeegees.
- Fisheyes. There will be silicone-impregnated spots on VCT.
- 100% solids are a must. Many jobs must be done overnight. Surface prep is not a quick job, and there is little time to wait for flash off of a waterborne.

Wood specific problems

- 100% solids haven't worked well for wood so far.
- Be wary of too many UV coats. Takes up a lot of time, especially when you have to wait for flashing off.
- Panelization is a concern.

Preparation!

It bears repeating: Prep is king.

 Far too many site-applied UV jobs have failed due to inadequate preparation of the floor.

 Specify how the surface needs to be prepared to the letter. Don't let applicators make judgment calls.

It's not all bad, though...

- Site-applied UV can and IS being done properly by some formulators.
 - But it has taken years, and everyone who has done it right learned all of these lessons at various points in their development cycle.
 - Go into your site-applied project aware of these problems from the start. Plan ahead.

Conclusion

- Zipper issues should be fixed chemically.
- Use a bleaching dye.
- Be mindful of lowered lamp output.
- Know what your substrate is.
- Prep, prep, prep.